• Skip to primary navigation
  • Skip to main content
  • Skip to footer

Cardiovascular BioResource Studies

This website explains a series of research studies involving healthy volunteers.

  • About
    • Studies
    • Milestones
    • Publications
  • Getting involved
    • Data privacy
  • FAQs
  • Contact

Glossary

DNA

DNA is the chemical name for the molecule that carries genetic instructions in all living things. The DNA molecule consists of two strands that wind around one another to form a shape known as a double helix. Each strand has a backbone made of alternating sugar (deoxyribose) and phosphate groups. Attached to each sugar is one of four bases: adenine (A), cytosine (C), guanine (G), and thymine (T). The two strands are held together by bonds between the bases; adenine bonds with thymine, and cytosine bonds with guanine. The sequence of the bases along the backbones serves as instructions for assembling protein and RNA molecules. Learn more about DNA here.

Gene

The gene is the basic physical unit of inheritance. Genes are passed from parents to offspring and contain the information needed to specify traits. Genes are arranged, one after another, on structures called chromosomes. A chromosome contains a single, long DNA molecule, only a portion of which corresponds to a single gene. Humans have approximately 20,000 genes arranged on their chromosomes. Learn more about genes here.

Genetic marker

A genetic marker is a DNA sequence with a known physical location on a chromosome. Genetic markers can help link an inherited disease with the responsible gene. DNA segments close to each other on a chromosome tend to be inherited together. Genetic markers are used to track the inheritance of a nearby gene that has not yet been identified, but whose approximate location is known. The genetic marker itself may be a part of a gene or may have no known function. Learn more about genetic markers here.

Genetic variation

Genetic variation refers to diversity in gene frequencies. Genetic variation can refer to differences between individuals or to differences between populations. Mutation is the ultimate source of genetic variation, but mechanisms such as sexual reproduction and genetic drift contribute to it as well. Learn more about genetic variation here.

Genome

The genome is the entire set of genetic instructions found in a cell. In humans, the genome consists of 23 pairs of chromosomes, found in the nucleus, as well as a small chromosome found in the cells’ mitochondria. Each set of 23 chromosomes contains approximately 3.1 billion bases of DNA sequence. Learn more about the genome here.

Genome-wide association study

A genome-wide association study (GWAS) is an approach used in genetics research to associate specific genetic variations with particular diseases. The method involves scanning the genomes from many different people and looking for genetic markers that can be used to predict the presence of a disease. Once such genetic markers are identified, they can be used to understand how genes contribute to the disease and develop better prevention and treatment strategies. Learn more about GWAS here.

Genotype

A genotype is an individual’s collection of genes. The term also can refer to the two alleles inherited for a particular gene. The genotype is expressed when the information encoded in the genes’ DNA is used to make protein and RNA molecules. The expression of the genotype contributes to the individual’s observable traits, called the phenotype. Learn more about the genotype here.

Phenotype

A phenotype is an individual’s observable traits, such as height, eye color, and blood type. The genetic contribution to the phenotype is called the genotype. Some traits are largely determined by the genotype, while other traits are largely determined by environmental factors. Learn more about the phenotype here.

Stem cell

A stem cell is a cell with the potential to form many of the different cell types found in the body. When stem cells divide, they can form more stem cells or other cells that perform specialized functions. Embryonic stem cells have the potential to form a complete individual, whereas adult stem cells can only form certain types of specialized cells. Stem cells continue to divide as long as the individual remains alive. Learn more about stem cells here.

The Cardiovascular Bioresource Studies are established by the Department of Public Health and Primary Care at the University of Cambridge and began recruiting participants in 2018. They are jointly sponsored by Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge.

Footer

Homepage

Freedom of information

Privacy

Sitemap

Copyright © 2022 · University of Cambridge · Cardiovascular Bioresource Studies